1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

Rambler's Top100

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

М801 - М820 (20)

Страницы:  «  1  2  3  4  » 

11.

M811

Пусть ha, hb, hc — высоты, а ma, mb, mc — медианы остроугольного треугольника (проведенные к сторонам а, b, с), r и R радиусы вписанной и описанной окружностей.

Докажите, что

.

 28 Января 2004     22:33 

12.

M812

Докажите, что при любом натуральном n
.

 28 Января 2004     22:35 

13.

M813

Даны отрезки , OB, одинаковой длины (точка B лежит внутри угла АОС). На них как на диаметрах построены окружности.
Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O (показано на рисунке), равна половине площади (обычного) треугольника ABC.

 28 Января 2004     22:36 

14.

M814

Отметим в натуральном ряду числа, которые можно представить в виде суммы двух квадратов натуральных чисел. Среди отмеченных чисел встречаются тройки последовательных чисел, например 72 = 62 + 62, 73 = 82 + 32, 74 = 72 + 52.

а) Объясните, почему не могут встретиться четыре последовательных отмеченных числа.

Докажите, что среди отмеченных чисел встретится бесконечно много

б) пар, в) троек последовательных чисел.

 28 Января 2004     22:36 

15.

M815*

На окружности расставлены 4k точек, занумерованных в произвольном порядке числами 1, 2, ..., 4k.

а) Докажите, что эти точки можно соединить 2k попарно пересекающимися отрезками так, что разность чисел в концах каждого отрезка не превосходит 3k - 1.

б) Постройте пример расстановки номеров, показывающий, что число 3k - 1 в пункте а) нельзя заменить меньшим.

 28 Января 2004     22:37 
Задач на странице:  5  10  25