358
471
всего разделов:
активных пользователей:
30 мартра 2005
Форумы снова функционируют.
21 декабря 2004
Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.
29 сентября 2004
Форум обновился до версии 2.0.10
15 мая 2004
Новый раздел: "Программирование"
16 апреля 2004 года
Задачи Ярославского турнира математических боев — 124 задачи с решениями.
29 марта 2004
Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.
5. Четыре точки, лежащие на одной окружности (12)
Задача 2.50* Через точку O пересечения биссектрис треугольника ABC проведена прямая MN перпендикулярно CO, причем M и N лежат на сторонах AC и BC соответственно. Прямые AO и BO пересекают описанную окружность треугольника ABC в точках Aў и Bў. Докажите, что точка пересечения прямых AўN и BўM лежит на описанной окружности. |
Пусть PQ — диаметр, перпендикулярный AB,
причем Q и C лежат по одну сторону от AB; L — точка
пересечения прямой QO с описанной окружностью; Mў и Nў — точки пересечения прямых LBў и LAў со сторонами AC и BC.
Достаточно проверить, что |
29 Января 2004 23:46 Раздел каталога :: Ссылка на задачу
|