1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

Rambler's Top100

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

M661 - M680 (20)

Страницы:  «  1  2  3  4  » 

11.

M671

Во вписанном четырехугольнике одна диагональ делит вторую пополам. Докажите, что квадрат длины первой диагонали равен половине суммы квадратов длин всех сторон четырехугольника.

 15 Января 2004     21:52 

12.

M672

Пусть a — натуральное число такое, что 2a - 2 делится на a (например, a = 3). Определим последовательность (xn) условиями x1 = a, xk+1 = 2xk - 1. Докажите, что делится на при любом k.

 15 Января 2004     21:52 

13.

M673

На плоскости в вершинах треугольника лежат три шайбы A, B и C. Хоккеист выбирает одну из них и бьет по ней так, что она проходит между двумя другими и останавливается в какой-то точке.

а) Покажите, как после пяти ударов шайба C сможет вернуться на свое место, а шайбы A и B поменяться местами.

б) Могут ли все три шайбы A, B и C вернуться на свои прежние места после 25 ударов?

 15 Января 2004     21:53 

14.

M674

На сторонах BC, AC и AB остроугольного треугольника ABC взяты точки A1, B1 и C1 соответственно. Известно, что центр описанной около треугольника ABC окружности совпадает с точкой пересечения высот треугольника A1B1C1. Докажите, что треугольники ABC и A1B1C1 подобны.

 15 Января 2004     21:53 

15.

M675*

Системой разновесов называется совокупность натуральных чисел, из которой нельзя извлечь два различных набора с одинаковой суммой (например, числа 24, 23, 22, 20, 17, 11 образуют систему разновесов, а числа 1, 2, 3, 4, 5, 8 не образуют: 2 + 3 + 4 = 1 + 8). Докажите, что из чисел, меньших 1000, можно выделить систему разновесов из
а) 10 чисел,
б) 11 чисел.
в) Докажите, что 14 чисел из них выбрать нельзя.
г) Докажите, что если числа образуют систему разновесов, то сумма их обратных величин не превосходит 5/2.
д) Выберите из чисел, меньших 700, систему разновесов из 11 чисел.

 15 Января 2004     21:53 
Задач на странице:  5  10  25