1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

liveinternet.ru: показано число хитов за 24 часа, посетителей за 24 часа и за сегодня Rambler's Top100 HotLog

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

Высшая лига (10)

Страницы:  «  1  2 

6.

Какова наименьшая возможная длина последовательности букв русского алфавита, такой что никакая последовательность букв не повторяется два раза подряд, а при приписывании любой буквы справа это условие нарушается?

 16 Февраля 2004     22:49 

7.

Кубическая решетка рассечена плоскостью ax + by + cz = 0, a, b и c — натуральные числа, взаимно простые в совокупности. Докажите, что количество различных многоугольников (с точностью до параллельного переноса), не разбитых плоскостями решетки, в этом сечении равно a + b + c.

 16 Февраля 2004     22:49 

8.

На сторонах BC, AC и AB треугольника ABC выбраны соответственно точки D, E и F так, что треугольники DEF и ABC подобны (ÐA = ÐD, ÐE = ÐB, ÐF = ÐC). Обозначим через H точку пересечения высот DFAE. Докажите, что длина отрезка HD не зависит от выбора точек D, E и F.

 16 Февраля 2004     22:58 

9.

Многочлены P(xy) и Q(xy) от двух переменных имеют целые коэффициенты. Известно, что при всех целых x и y значение P(xy) делит значение Q(xy). Докажите, что существует многочлен R(xy) такой, что R(xy) = P(xy) / Q(xy).

 16 Февраля 2004     22:50 

10.

Даны 2 единичных куба. Сначала Петя расставляет на ребрах обоих кубов стрелочки. Потом Вася совмещает эти кубы. Петя выигрывает, если после совмещения кубов больше половины стрелочек одного куба совпадут с соответствующими стрелочками другого куба, а Вася — если совпадут меньше половины стрелочек. Если совпадет ровно половина стрелочек — ничья. Каким будет результат при правильной игре обоих партнеров?

 16 Февраля 2004     22:58 
Задач на странице:  5  10  25