358
471
всего разделов:
активных пользователей:
30 мартра 2005
Форумы снова функционируют.
21 декабря 2004
Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.
29 сентября 2004
Форум обновился до версии 2.0.10
15 мая 2004
Новый раздел: "Программирование"
16 апреля 2004 года
Задачи Ярославского турнира математических боев — 124 задачи с решениями.
29 марта 2004
Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.
2. Величина угла между двумя хордами (7)
Решить задачи этого параграфа помогает следующий факт. Пусть A, B, C, D — точки на окружности в указанном порядке. Тогда угол между хордами AC и BD равен (ИAB + ИCD) / 2, угол между хордами AB и CD равен |ИAD – ИCB| / 2. (Для доказательства нужно через конец одной из хорд провести хорду, параллельную другой хорде.)
Страницы: « 1 2 | |
6. | Задача 2.19 На окружности взяты точки A,C1,B,A1,C,B1 в указанном порядке. а) Докажите, что если прямые AA1,BB1 и CC1 являются биссектрисами углов треугольника ABC, то они являются высотами треугольника A1B1C1. б) Докажите, что если прямые AA1,BB1 и CC1 являются высотами треугольника ABC, то они являются биссектрисами углов треугольника A1B1C1. |
17 Января 2004 2:11 | |
7. | Задача 2.20 В окружность вписаны треугольники T1 и T2, причем вершины треугольника T2 являются серединами дуг, на которые окружность разбивается вершинами треугольника T1. Докажите, что в шестиугольнике, являющемся пересечением треугольников T1 и T2, диагонали, соединяющие противоположные вершины, параллельны сторонам треугольника T1 и пересекаются в одной точке. |
17 Января 2004 2:15 | |
Страницы: « 1 2 |