1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

Rambler's Top100

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

2. Величина угла между двумя хордами (7)

Решить задачи этого параграфа помогает следующий факт. Пусть A, B, C, D — точки на окружности в указанном порядке. Тогда угол между хордами AC и BD равен (ИAB + ИCD) / 2, угол между хордами AB и CD равен |ИAD – ИCB| / 2. (Для доказательства нужно через конец одной из хорд провести хорду, параллельную другой хорде.)

Задача 2.18

Внутри треугольника ABC взята точка P так, что  РBPC = РA + 60°, РAPC = РB + 60° и РAPB = РC + 60°. Прямые AP,BP и CP пересекают описанную окружность треугольника ABC в точках Aў,Bў и Cў. Докажите, что треугольник AўBўCў правильный.

Складывая равенства 
ИCўA + И CAў = 2(180° – РAPC) = 240° – 2РB и
ИABў + ИBAў = 240° – 2РC,
а затем вычитая из их суммы равенство ИBAў + ИCAў = 2РA,
получаем ИCўBў = ИCўA + ИABў = 480° – 2(РA + РB + РC) = 120°.
Аналогично ИBўAў = И CўAў = 120°.
 17 Января 2004     2:02 
Раздел каталога :: Ссылка на задачу