1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

Rambler's Top100

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

2. Отношение сторон подобных треугольников (17)

Задача 1.17

а)В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что AD : DC  =  AB : BC.

б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1  =  (b + с) : a, где a, b, c — длины сторон треугольника.

а) Опустим из вершин A и C перпендикуляры AK и CL на прямую BD. Так как РCBL = РABK и РCDL = РKDA, то DBLC ~ DBKA и DCLD ~ DAKD. Поэтому AD : DC = AK : CL = AB : BC.

б) Учитывая, что BA1 : A1C = BA : AC и BA1 + A1C = BC, получаем BA1 = ac / (b + c). Так как BO — биссектриса треугольника ABA1, то AO : OA1 = AB : BA1 = (b + c) : a.

 18 Января 2004     15:23 
Раздел каталога :: Ссылка на задачу