1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

Rambler's Top100

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

1. Отрезки, заключенные между параллельными прямыми (16)

Страницы:  «  1  2  3  4  » 

11.

Задача 1.11

Точки A и B высекают на окружности с центром O дугу величиной 60°. На этой дуге взята точка M. Докажите, что прямая, проходящая через середины отрезков MA и OB, перпендикулярна прямой, проходящей через середины отрезков MB и OA.

 28 Декабря 2003     0:33 

12.

Задача 1.12

а) Точки A, B и C лежат на одной прямой, а точки A1, B1, и C1 — на другой. Докажите, что если AB1||BA1 и AC1||CA1, то BC1||CB1.

б) Точки A, B и C лежат на одной прямой, а точки A1, B1 и C1 таковы, что AB1||BA1, AC1||CA1 и BC1||CB1. Докажите, что точки A1, B1 и C1 лежат на одной прямой.

 28 Декабря 2003     0:37 

13.

Задача 1.13

В треугольнике ABC проведены биссектрисы AA1 и BB1. Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.

 28 Декабря 2003     0:41 

14.

Задача 1.14

Пусть M и N — середины сторон AD и BC прямоугольника ABCD. На продолжении отрезка DC за точку D взята точка P; Q — точка пересечения прямых PM и AC. Докажите, что РQNM  =  РMNP.

 28 Декабря 2003     0:44 

15.

Задача 1.15

На продолжениях оснований AD и BC трапеции ABCD за точки A и C взяты точки K и L. Отрезок KL пересекает стороны AB и CD в точках M и N, а диагонали AC и BD в точках O и P. Докажите, что если KM = NL, то KO = PL.

 28 Декабря 2003     0:46 
Задач на странице:  5  10  25