358
471
всего разделов:
активных пользователей:
30 мартра 2005
Форумы снова функционируют.
21 декабря 2004
Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.
29 сентября 2004
Форум обновился до версии 2.0.10
15 мая 2004
Новый раздел: "Программирование"
16 апреля 2004 года
Задачи Ярославского турнира математических боев — 124 задачи с решениями.
29 марта 2004
Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.
Финальный тур боев (13)
Страницы: 1 2 3 » | |
1. | Существуют ли 5 различных натуральных чисел, наименьшее общее кратное которых равно 5m, где m — наименьшее из чисел? |
16 Ноября 2003 12:50 | |
2. | В газете написали, что в парламенте Ругандии очередной раз поругались все 1998 депутатов, после чего отправили друг другу письма с обвинениями. По утверждению журналиста, все депутаты отправили писем поровну, и никакие два депутата письмами не обменялись, хотя и из любых двух депутатов один отправил другому письмо. Докажите, что журналист ошибается. |
16 Ноября 2003 12:50 | |
3. | Можно ли на плоскости отметить 9 точек так, чтобы нашлось 13 прямых, на каждой из которых лежит ровно 3 из отмеченных точек? |
16 Ноября 2003 12:51 | |
4. | Из 27 игральных кубиков (грани каждого занумерованы числами 1, 2, ..., 6 так, что сумма номеров противоположных граней равна 7) сложили куб. При этом соседние кубики граничат по граням с одинаковыми номерами. Какова может быть сумма номеров на поверхности получившегося куба? |
16 Ноября 2003 12:51 | |
5. | Какое наибольшее число ладей можно поставить на шахматную доску, чтобы среди них только две били друг друга? |
16 Ноября 2003 12:52 | |
Страницы: 1 2 3 » |