358
471
всего разделов:
активных пользователей:
30 мартра 2005
Форумы снова функционируют.
21 декабря 2004
Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.
29 сентября 2004
Форум обновился до версии 2.0.10
15 мая 2004
Новый раздел: "Программирование"
16 апреля 2004 года
Задачи Ярославского турнира математических боев — 124 задачи с решениями.
29 марта 2004
Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.
Вариант боев 4 (10)
Задачи 32-39 составили боле сложный вариант, задачи 32, 33, 35, 37-41 составили менее сложный вариант
Страницы: « 1 2 | |
6. | Степану Фомичу 23 февраля 2001 года выдали премию: 250 рублей 00 копеек. Он решил, используя эти деньги, заработать больше и купить жене подарок. Для этого, начиная со следующего дня, он стал ежедневно посещать казино, где каждый день либо выигрывал 20 рублей, либо проигрывал ровно половину имеющихся у него денег. Подсчитав свои доходы накануне 8 марта, Степан Фомич выяснил, что остался в выигрыше, но барыш оказался невелик — меньше трех рублей. Сколько именно? |
11 Ноября 2003 18:02 | |
7. | Найдите все пары простых чисел (p, q) при которых уравнение x4 + (q – 2)x = p – 4 имеет, по крайней мере, один целый корень. |
11 Ноября 2003 18:03 | |
8. | В однокруговом хоккейном турнире все команды набрали разное число очков. (В хоккее за победу дается 2 очка, за ничью 1 очко и за поражение 0 очков.) Оказалось, что команда, занявшая последнее место, выиграла не менее 25% своих матчей, а команда, занявшая второе место, выиграла не более 40% своих матчей. Какое наибольшее количество команд могло участвовать в этом турнире? |
11 Ноября 2003 18:04 | |
9. | Какое наибольшее количество королей можно расставить на шахматной доске так, чтобы ровно половина из них не угрожала никому из остальных? |
11 Ноября 2003 18:05 | |
10. | На гипотенузе AB прямоугольного треугольника ABC выбраны точки E и F (точка E расположена между точками A и F) такие, что треугольник CEF — равносторонний; точка D — середина гипотенузы. Докажите, что ÐDCF = 2 × ÐACE. |
11 Ноября 2003 18:06 | |
Страницы: « 1 2 |