1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

Rambler's Top100

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

Вторая лига (8)

Страницы:  «  1  2 

6.

Найдется ли 8 натуральных чисел таких, что никакое из них не делится ни на какое другое, однако НОК любых двух из них равен одному и тому же числу?

 11 Февраля 2004     21:51 

7.

В кубике покрашено n ребер, но неизвестно какие. При каком наименьшем n можно гарантировать, что найдется грань с четырьмя окрашенными ребрами?

 11 Февраля 2004     21:52 

8.

Пусть a, b и c — различные положительные числа такие, что a2, b2 и c2 — последовательные члены арифметической прогрессии. Докажите, что числа 1/(b + c), 1/(c + a), 1/(a + b) также образуют арифметическую прогрессию.

 11 Февраля 2004     21:52 
Задач на странице:  5  10  25