358
471
всего разделов:
активных пользователей:
30 мартра 2005
Форумы снова функционируют.
21 декабря 2004
Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.
29 сентября 2004
Форум обновился до версии 2.0.10
15 мая 2004
Новый раздел: "Программирование"
16 апреля 2004 года
Задачи Ярославского турнира математических боев — 124 задачи с решениями.
29 марта 2004
Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.
М801 - М820 (20)
M818
Пусть какие-то k вершин правильного n-угольника белые (остальные вершины — черные). Будем называть множество белых вершин равномерным, если при любом m количества белых вершин в любых двух наборах из m последовательных вершин n-угольника совпадают или отличаются на 1 (см. рисунок, где приведен пример равномерного множества для n = 8, k = 5). а) Постройте равномерные множества для
n = 12, k = 5;
Докажите, что равномерное множество существует и единственно (с точностью до поворотов n-угольника), б) если n делится на k; в)* для любых n и k (k £ n). |
28 Января 2004 22:40 Раздел каталога :: Ссылка на задачу
|