358
471
всего разделов:
активных пользователей:
30 мартра 2005
Форумы снова функционируют.
21 декабря 2004
Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.
29 сентября 2004
Форум обновился до версии 2.0.10
15 мая 2004
Новый раздел: "Программирование"
16 апреля 2004 года
Задачи Ярославского турнира математических боев — 124 задачи с решениями.
29 марта 2004
Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.
М761 - М780 (20)
M765 Пусть B — конечное множество точек на плоскости, не принадлежащих одной прямой. а) Докажите, что найдутся три точки множества B такие, что проходящая через них окружность не содержит внутри себя других точек множества B. б)* Назовем триангуляцией множества B семейство треугольников с множеством вершин B, не налегающих друг на друга и в объединении дающих выпуклый многоугольник (триангуляцию множества B можно получить, соединяя его точки непересекающимися отрезками, пока это возможно). Докажите, что для любого B существует такая триангуляция, что окружность, описанная около любого треугольника этой триангуляции, не содержит внутри себя точек множества B. Укажите способ построения такой триангуляции. в)* Докажите, что если никакие четыре точки множества B не лежат на одной окружности, то описанная в пункте б) триангуляция единственна. |
18 Января 2004 21:35 Раздел каталога :: Ссылка на задачу
|