1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

Rambler's Top100

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

M681 - M700 (20)

Страницы:  «  1  2 

11.

M691

Будем говорить, что число обладает свойством (К) , если оно разлагается в произведение К последовательных натуральных чисел, больших 1.

а) Найдите К такое, для которого некоторое число N обладает одновременно свойствами (К) и (К + 2).

б) Докажите, что чисел, обладающих одновременно свойствами (2) и (4), не существует.

 17 Января 2004     23:24 

12.

M692

Точки C1, A1, B1 взяты на сторонах, соответственно, АВ, ВС, СА треугольника ABC так, что АС1 : С1В = ВA1 : A1С = CB1 : BA1 = 1 : 3. Докажите, что периметр Р треугольника AВС и периметр Р1 треугольника А1В1С1 связаны неравенствами

а) Р1<3/4P;

б) Р1>1/2P.

 17 Января 2004     23:27 

13.

M693

В некотором поселке 1000 жителей. Ежедневно каждый из них делится узнанными накануне новостями со всеми своими знакомыми. Известно, что любая новость становится известной всем жителям поселка. Докажите, что можно выбрать 90 жите лей так, что если одновременно всем им сообщить какую-то новость, то через 10 дней она станет известной всем жителям поселка.

 17 Января 2004     23:29 

14.

M694

В каждой вершине куба записано число. За один шаг к двум числам, размещенным на одном (любом) ребре, прибавляется по единице. Можно ли за несколько таких шагов сделать все восемь чисел равными между собой, если вначале были поставлены числа, как на рисунке слева? как на среднем рисунке? как на рисунке справа?

 17 Января 2004     23:35 

15.

M695*

Можно ли все клетки какой-нибудь прямоугольной таблицы окрасить в белый и черный цвета так, чтобы черных и белых клеток было поровну, а в каждой строке и в каждом столбце было более 3/4 клеток одного цвета?

 17 Января 2004     23:37 

16.

M696

Mожно ли таблицу 10 × 10 клеток заполнить 100 различными натуральными числами так, чтобы для любого квадрата k × k клеток (2£ k£ 10)

а) суммы,

б) произведения k чисел на его диагоналях были одинаковы?

 17 Января 2004     23:38 

17.

M697

Назовем пузатостью прямоугольника отношение его меньшей стороны к большей (пузатость квадрата равна 1). Докажите, что, как бы ни разрезать квадрат на прямоугольники, сумма их пузатостей будет не меньше 1.

 17 Января 2004     23:39 

18.

M698

На сторонах a, b, c, d вписанного в окружность четырехугольника «наружу» построены прямоугольники размерами a×c, b×d, c×a, d×b. Докажите, что центры этих прямоугольников являются вершинами

а) параллелограмма,

б) прямоугольника.

 17 Января 2004     23:41 

19.

M699

Полукруг с диаметром АВ разрезан отрезком СО, перпендикулярным АВ, на два криволинейных треугольника ACD и BCD, в которые вписаны окружности, касающиеся АВ в точках Е и F (показано на рисунке). Докажите, что

а) AD = AF;

б) DF — биссектриса угла BDC;

в) величина угла EDF не зависит от выбора точки С на АВ.

 17 Января 2004     23:43 

20.

M700

Можно ли множество всех конечных десятичных дробей разбить на а) два, 6) три класса так, чтобы в один класс не попали два числа с разностью 10m (ни при каком целом m = 0, ±1, ±2, ...)?

 17 Января 2004     23:44 
Задач на странице:  5  10  25