1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

Rambler's Top100

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

2. Отношение сторон подобных треугольников (17)

Задача 1.24

Пусть AC — большая из диагоналей параллелограмма ABCD. Из точки C на продолжения сторон AB и AD опущены перпендикуляры CE и CF соответственно. Докажите, что AB · AE + AD · AF = AC2.

Опустим из вершины В перпендикуляр BG на AC. Из подобия треугольников ABG и ACE получаем AC · AG = AE · AB. Прямые AF и CB параллельны, поэтому углы GCB и CAF равны и прямоугольные треугольники CBG и ACF подобны. Из подобия этих треугольников получаем AC · CG = AF · BC. Складывая полученные равенства, находим AC · (AG + CG) = AE · AB + AF · BC. Так как AG + CG = AC, получаем требуемое равенство.

 17 Января 2004     14:55 
Раздел каталога :: Ссылка на задачу