1863
358
471
всего задач:
всего разделов:
активных пользователей:
  Login: (регистрация)
  Пароль:
    

30 мартра 2005

Форумы снова функционируют.

21 декабря 2004

Видимо в связи с обнаруженными дырами в phpBB, форум был взломан, а через него взломано и всё остальное содержимое ceemat.ru. Всё кроме форума восстановлено, ведется дискуссия по поводу его сохранения.
Приносим извинения за неудобства.

29 сентября 2004

Форум обновился до версии 2.0.10

15 мая 2004

Новый раздел: "Программирование"

16 апреля 2004 года

Задачи Ярославского турнира математических боев — 124 задачи с решениями.

29 марта 2004

Таллинская викторина: занимательные вопросы и задачи для увлеченных химией.

Rambler's Top100

Костромской ЦДООШ СУНЦ МГУ - Школа им. А. Н. Колмогорова.\r\nОфициальный сайт

Осенний тур. Тренировочный вариант. 8-9 класс (5)

Итог подводился по трем задачам, по которым достигнуты наилучшие результаты, баллы за пункты одной задачи суммируются.

Стоимость задач
Номер задачи 1 2 4 5
Баллы 4 5 1 2 2 5 5

В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника?

Ответ: нет.

Назовем граничными те треугольники разбиения, которые содержат хотя бы одну сторону 2002-угольника. По условию, таких треугольников должно быть ровно 1000. Заметим, что в каждом граничном треугольнике содержится не более двух сторон нашего многоугольника. Значит, количество таких треугольников не может быть меньше 2002 : 2 = 1001. Получили противоречие.

 13 Декабря 2003     14:33 
Раздел каталога :: Ссылка на задачу